Computational design of a self-assembling symmetrical β-propeller protein.
نویسندگان
چکیده
The modular structure of many protein families, such as β-propeller proteins, strongly implies that duplication played an important role in their evolution, leading to highly symmetrical intermediate forms. Previous attempts to create perfectly symmetrical propeller proteins have failed, however. We have therefore developed a new and rapid computational approach to design such proteins. As a test case, we have created a sixfold symmetrical β-propeller protein and experimentally validated the structure using X-ray crystallography. Each blade consists of 42 residues. Proteins carrying 2-10 identical blades were also expressed and purified. Two or three tandem blades assemble to recreate the highly stable sixfold symmetrical architecture, consistent with the duplication and fusion theory. The other proteins produce different monodisperse complexes, up to 42 blades (180 kDa) in size, which self-assemble according to simple symmetry rules. Our procedure is suitable for creating nano-building blocks from different protein templates of desired symmetry.
منابع مشابه
Functional β-propeller lectins by tandem duplications of repetitive units.
Internal symmetry in proteins is likely to be the footprint of evolution by gene duplication and fusion. Like other symmetrical proteins, β-propellers, which are made of 4-10 β-sheet units (blades) circularly arranged around a central tunnel, have probably evolved by duplication and fusion of a rudimentary repetitive unit. However, reproducing the evolution of functional β-propellers by duplica...
متن کاملFluid-structure interaction studies on marine propeller
Composite propellers offer high damping characteristics and corrosion resistance when compared with metal propellers. But the design of a hybrid composite propeller with the same strength of metal propeller is the critical task. For this purpose, the present paper focusses on fluid-structure interaction analysis of hybrid composite propeller with Carbon/Epoxy, R-Glass/Epoxy and S2-Glass/Epoxy t...
متن کاملNumerical simulation of hull and propeller interaction in acceleration maneuver
Prediction of a ship’s trajectory during a maneuvering motion is so important. In this study, the acceleration maneuver for a twin-screw vessel is directly investigated using computational fluid dynamic (CFD) environment and unsteady RANS (Reynolds Averaged Navier-Stokes) solver. For this purpose, the self-propulsion and acceleration simulations with hull and propeller interaction for the well-...
متن کاملNanohedra: using symmetry to design self assembling protein cages, layers, crystals, and filaments.
A general strategy is described for designing proteins that self assemble into large symmetrical nanomaterials, including molecular cages, filaments, layers, and porous materials. In this strategy, one molecule of protein A, which naturally forms a self-assembling oligomer, A(n), is fused rigidly to one molecule of protein B, which forms another self-assembling oligomer, B(m). The result is a f...
متن کاملCrystal structure of Escherichia coli BamB, a lipoprotein component of the β-barrel assembly machinery complex.
In Gram-negative bacteria, the BAM (β-barrel assembly machinery) complex catalyzes the essential process of assembling outer membrane proteins. The BAM complex in Escherichia coli consists of five proteins: one β-barrel membrane protein, BamA, and four lipoproteins, BamB, BamC, BamD, and BamE. Despite their role in outer membrane protein biogenesis, there is currently a lack of functional and s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 111 42 شماره
صفحات -
تاریخ انتشار 2014